top of page

Journal Publications

  1. Y. Noda and K. Ohno, "Metallic and Non-Metallic Properties of One-Dimensional Peanut-Shaped Fullerene Polymers", Synth. Met. 161, 1546 (2011). [link]

  2. Y. Noda, S. Ono, and K. Ohno, "Metallic Three-Coordinated Carbon Networks with Eight-Membered Rings Showing High Density of States at the Fermi Level", Phys. Chem. Chem. Phys. 16, 7102 (2014). [link]

  3. Y. Noda, S. Ono, and K. Ohno, "Geometry Dependence of Electronic and Energetic Properties of One-Dimensional Peanut-Shaped Fullerene Polymers", J. Phys. Chem. A 119, 3048 (2015). [link]

  4. H. Yoshioka, H. Shima, Y. Noda, S. Ono, and K. Ohno, "Tomonaga-Luttinger Liquid Theory for Metallic Fullerene Polymers", Phys. Rev. B 93, 165431 (2016). [link]

  5. Y. Noda, K. Ohno, and S. Nakamura, "Momentum-Dependent Band Spin Splitting in Semiconducting MnO2: A Density Functional Calculation", Phys. Chem. Chem. Phys. 18, 13294 (2016). [link]

  6. K. Tanikawa, K, Ohno, Y. Noda, S. Ono, R. Kuwahara, A. Takashima, M. Nakaya, and J. Onoe, "A Molecular Heterojunction of Zinc Phthalocyanine and Peanut-Shaped Fullerene Polymer: A Density Functional Study", Chem. Phys. Lett. 686, 68 (2017). [link]

  7. Y. Sakamoto, Y. Noda, K. Ohno, and S. Nakamura, "Chemical Insights from Theoretical Electronic States in Nickel Hydroxide and Monolayer Surface Model", J. Phys. Chem. C 121, 24603–24611 (2017). [link]

  8. Y. Noda, K. Nakano, H. Takeda, M. Kotobuki, L. Lu, and M. Nakayama, "Computational and Experimental Investigations of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3", Chem. Mater. 29, 8983–8991 (2017). [link]

  9. T. Okugawa, K. Ohno, Y. Noda, and S. Nakamura, "Weakly Spin-Dependent Band Structures of Antiferromagnetic Perovskite LaMO3 (M = Cr, Mn, Fe)", J. Phys.: Condens. Matter 30, 075502  (2018). [link]

  10. T. Okubo, K. Himoto, K. Tanishima, S. Fukuda, Y. Noda, M. Nakayama, K. Sugimoto, M. Maekawa, and T. Kuroda-Sowa, "Crystal Structure and Band-Gap Engineering of a Semiconducting Coordination Polymer Consisting of Copper(I) Bromide and a Bridging Acceptor Ligand", Inorg. Chem. 57, 2373–2376 (2018). [link]

  11. R. Jalem, M. Nakayama, Y. Noda, T. Le, I. Takeuchi, Y. Tateyama, and H. Yamasaki, "A General Representation Scheme for Crystalline Solids Based on Voronoi-Tessellation Real Feature Values and Atomic Property Data", Sci. Technol. Adv. Mater. 19, 231–242 (2018). [link]

  12. Y. Noda, K. Nakano, M. Otake, R. Kobayashi, M. Kotobuki, L. Lu, and M. Nakayama,  "Research Update: Ca Doping Effect on the Li-Ion Conductivity in NASICON-Type Solid Electrolyte LiZr2(PO4)3: A First-Principles Molecular Dynamics Study", APL Mater. 6, 060702 (2018). (Editor's Pick) [link]

  13. Y. Sakamoto, Y. Noda, K. Ohno, K. Koike, K. Fujii, T. M. Suzuki, T. Morikawa, and S. Nakamura, "First Principles Calculation of Surface Dependent Electronic Structures: A Study on β-FeOOH and γ-FeOOH", Phys. Chem. Chem. Phys. 21, 18486–18494 (2019). [link]

  14. K. Nakano, Y. Noda, N. Tanibata, M. Nakayama, K. Kajihara, and K. Kanamura,  "Computational Investigation of the Mg-Ion Conductivity and Phase Stability of MgZr4(PO4)6", RSC Adv. 9, 12590–12595 (2019). [link]

  15. T. Yokoi, Y. Noda, A. Nakamura,  and K. Matsunaga, "Neural-Network Interatomic Potential for Grain Boundary Structures and Their Energetics in Silicon", Phys. Rev. Mater. 4, 014605 (2020). [link]

  16. Y. Noda, M. Otake, and M. Nakayama, "Descriptors for Dielectric Constants of Perovskite-Type Oxides by Materials Informatics with First-Principles Density Functional Theory", Sci. Technol. Adv. Mater. 21, 92–99 (2020). [link]

  17. K. Nakano, Y. Noda, N. Tanibata, H. Takeda, M. Nakayama, R. Kobayashi, and I. Takeuchi,  "Exhaustive and Informatics-Aided Search for Fast Li-Ion Conductor with NASICON-Type Structure Using Materials Simulation and Bayesian Optimization", APL Mater. 8, 041112 (2020). [link]

  18. J. Onoe, M. Nakaya, S. Watanabe, T. Nakayama, K. Ohno, and Y. Noda, "Electron-Beam Irradiation of Photopolymerized C60 Film Studied Using in situ Scanning Tunneling Microscope, in situ Fourier-Transform Infrared Spectroscopy, and First-Principles Calculations", AIP Adv. 10, 085212 (2020). (Editor's Pick) [link]

  19. Y. Kobayashi, M. Sawamura, S. Kondo, M. Harada, Y. Noda, M. Nakayama, S. Kobayakawa, W. Zhao, A. Nakao, A. Yasui, H. B. Rajendra, K. Yamanaka, T. Ohta, and N. Yabuuchi,  "Activation and Stabilization Mechanisms of Anionic Redox for Li Storage Applications: Joint Experimental and Theoretical Study on Li2TiO3–LiMnO2 Binary System", Mater. Today 37, 43–55 (2020). [link]

  20. E. Kamiyama, T. Yokoi, Y. Noda, and K. Sueoka, "Differential Clustering of Self-Interstitials during Si Crystal Growth", J. Cryst. Growth 574, 126313 (2021). [link]

  21. T. Ushiro, T. Yokoi, Y. Noda, E. Kamiyama, M. Ohbitsu, H. Nagakura, K. Sueoka, and K. Matsunaga, "Preferential Growth Mode of Large-Sized Vacancy Clusters in Silicon: A Neural-Network Potential and First-Principles Study", J. Phys. Chem. C 125, 26869–26882 (2021). [link]

  22. M. Ohbitsu, T. Yokoi, Y. Noda, E. Kamiyama, T. Ushiro, H. Nagakura, K. Sueoka, and K. Matsunaga, "Atomic Structures and Stability of Finite-Size Extended Interstitial Defects in Silicon: Large-Scale Molecular Simulations with a Neural-Network Potential", Scr. Mater. 214, 114650 (2022). [link]

  23. R. Fukuma, M. Harada, W. Zhao, M. Sawamura, Y. Noda, M. Nakayama, M. Goto, D. Kan, Y. Shimakawa, M. Yonemura, N. Ikeda, R. Watanuki, H. L. Andersen, A. M. D’Angelo, N. Sharma, J. Park, H. R. Byon, S. Fukuyama, Z. Han, H. Fukumitsu, M. Schulz-Dobrick, K. Yamanaka, H. Yamagishi, T. Ohta, and N. Yabuuchi, "Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li3NbO4–NiO Binary System", ACS Cent. Sci. 8, 775–794 (2022). [link]

  24. M. Nakayama, K. Nakano, M. Harada, N. Tanibata, H. Takeda, Y. Noda, R. Kobayashi, M. Karasuyama, I. Takeuchi, and M. Kotobuki, "Na Superionic Conductor-Type LiZr2(PO4)3 as a Promising Solid Electrolyte for Use in All-Solid-State Li Metal Batteries", Chem. Commun. 58, 9328–9340 (2022). [link]

  25. T. Saito, Y. Ishikawa, Y. Noda, T. Yokoi, Y. Oshima, A. Nakamura, and K. Matsunaga, "Ca-Vacancy Effect on the Stability of Substitutional Divalent Cations in Calcium-Deficient Hydroxyapatite", J. Am. Ceram. Soc. 106, 1587–1596 (2022). [link]

  26. A. Sada, Y. Noda, K. Sueoka, K. Kajiwara, and M. Hourai, "First Principles Analysis on Void-Reduction Mechanism and Impact of Oxygen in Nitrogen-Doped CZ-Si Crystal", J. Cryst. Growth 610, 127176 (2023). [link]

Proceedings

  1. S. Ono, M. Zhang, Y. Noda, and K. Ohno, "Tunable Seebeck Coefficient in Monolayer Graphene Under Periodic Potentials", J. Electron. Mater. 43, 1505 (2013). [link]

  2. Y. Noda, T. Yokoi, A. Nakamura, and K. Matsunaga, "Neural-Network Interatomic Potentials for Carbon Segregated Silicon Grain Boundaries", AMTC Letters 6, 226227 (2019). [link]

  3. T. Saito, T. Yokoi, Y. Noda, A. Nakamura, and K. Matsunaga, "Theoretical Investigation of Charge States on Hydroxyapatite Surfaces", AMTC Letters 6, 242243 (2019). [link]

  4. T. Yokoi, Y. Noda, A. Nakamura, and K. Matsunaga, "Neural-Network Interatomic Potential for Grain Boundary Structures in Silicon", AMTC Letters 6, 250251 (2019). [link]

  5. B. P. Gautam, Y. Noda, R. Gautam, H. P. Sharma, K. Sato, and S. B. Neupane, "Body Part Localization and Pose Tracking by Using Deepercut Algorithm for King Cobra's BBL (Biting Behavior Learning)", Proc. Int'l Conf. Networking and Network Applications (NaNA) 2020, 422429 (2020). [link]

  6. Y. Noda and B. P. Gautam, "A Proposal of Large Scale Network Route Optimization Technique Based on Genetic Algorithm", Proc. Int'l Conf. Networking and Network Applications (NaNA) 2021, 265271 (2021). [link]

  7. Y. Mukaiyama, Y. Fukui, T. Taishi, V. Artemiev, Y. Noda, and K. Sueoka, "Numerical Modeling and Evaluation of Constitutional Supercooling During Silicon Single Crystal Growth by Cz Method", Proc. Int'l Symp. Adv. Sci. Technol. Silicon Mater. (JSPS Silicon Symposium) 8, P-2 (2022). [link]

  8. A. Sada, Y. Noda, K. Sueoka, K. Kajiwara, and M. Hourai, "First-Principles Calculation on N-V Complex Formation in Si Crystal Growth", Proc. Int'l Symp. Adv. Sci. Technol. Silicon Mater. (JSPS Silicon Symposium) 8, P-3 (2022). [link]

  9. Y. Noda, E. Kamiyama, and K. Sueoka, "A Linear-Regression Machine-Learning Model for Predicting Total Energies of Silicon Crystal Structures", Proc. Int'l Symp. Adv. Sci. Technol. Silicon Mater. (JSPS Silicon Symposium) 8, P-18 (2022). [link]

  10. M. Sato, T. Yokoi, Y. Noda, E. Kamiyama, and K. Sueoka, "Development of ANN Potential for Si(100) Surface and Validation of Calculation Accuracy", Proc. Int'l Symp. Adv. Sci. Technol. Silicon Mater. (JSPS Silicon Symposium) 8, P-19 (2022). [link]

  11. K. Yamanaka, T. Yokoi, E. Kamiyama, Y. Noda, and K. Sueoka, "Artificial Neural Network Potential Analysis on Self-Interstitial Atoms in Si", Proc. Int'l Symp. Adv. Sci. Technol. Silicon Mater. (JSPS Silicon Symposium) 8, P-20 (2022). [link]

Review articles (domestic)

  1. Y. Noda and K. Ohno, "6員環の幾何学的構造に依存する1次元ピーナッツ型フラーレンポリマーの電子状態", Bull. Nano Sci. Technol.(ナノ学会会報) 11, 2125 (2012). (in Japanese) [link]

  2. Y. Noda and M. Nakayama, "データサイエンスと材料計算による蓄電池材料探索",   Bulltin "Kozan"(金属鉱山会 機関誌「鉱山」) 71, (1) 29–37 (2018). (in Japanese) [link]

Books

  1. Y. Noda and M. Nakayama, "データ科学と第一原理計算を活用した蓄電池用固体電解質の物性評価", Joho Kiko(情報機構) (2018). (A book section of "マテリアルズ・インフォマティクス ~データ科学と計算・実験の融合による材料開発~", in Japanese) [link]

  2. Y. Noda, "情報科学と第一原理計算に基づくLiイオン電池用固体電解質の電気化学的安定性およびLiイオン伝導性の評価", Technical Information Institute Co., Ltd.(技術情報協会) (2019). (A book section of "マテリアルズ・インフォマティクスによる材料開発と活用集 -データベースの構築、記述子の設計法、モデル作成-", in Japanese) [link]

  3. Y. Noda, "情報科学と電子状態計算の組合せで蓄電池用固体電解質の物性を評価する",  Kindai kagaku sha Co., Ltd.(近代科学社) (2020). (A book section of "23の先端事例がつなぐ 計算科学のフロンティア 計算で物事を理解する予測する", in Japanese) [link]

  4. Y. Noda, K. Nakano, and M. Nakayama, "高リチウムイオン伝導性固体電解質の探索方法とは?",  Joho Kiko(情報機構) (2020). (A book section of "マテリアルズ・インフォマティクスQ&A集 -解析実務と応用事例-", in Japanese) [link]

  5. Y. Noda, "第一原理計算の基礎/機械学習の基礎",  CMC Research(シーエムシー・リサーチ) (2021). (book sections of "R&D Trends on Batteries Materials and Devices using AI/MI/Computational Science AIMI・計算科学を活用した蓄電池研究開発動向)", in Japanese) [link]

Academic Publications

  • Y. Noda, "8員環を含む3配位ナノカーボン構造体の第一原理計算(Theme: First principles calculations of three-coordinated nanocarbon materials with octagonal rings)", Department of Physics, Graduate School of Engineering, Yokohama National Univeristy, Japan, March 2015 (Supervisor: Prof. Kaoru Ohno) [Doctoral dissertation]

  • Y. Noda, "フラーレンポリマーとリチウムイオン電池電解質還元反応の第一原理計算", Department of Physics, Graduate School of Engineering, Yokohama National Univeristy, Japan, March 2012 (Supervisor: Prof. Kaoru Ohno) [Master thesis, PED portfolio]

  • Y. Noda, "金属性ピーナッツ型フラーレンポリマーの電子状態の解析", Department of Physics, Faculty of Engineering, Yokohama National Univeristy, Japan, March 2010 (Supervisor: Prof. Kaoru Ohno) [Bachelor thesis]

bottom of page